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We treat the problem of selecting the next degree of freedom for update in an extremal optimization
algorithm designed to find the ground state of a system with a complex energy landscape. We show that there
exists a best distribution for selecting the next degree of freedom in order to optimize any linear function of the
state probabilities, e.g., the expected number of visits to the ground state. We dub the class of algorithms using
this best distribution in conjunction with extremal optimizatifitmess threshold acceptingn addition, we
construct an extended random walk and use it to show that fithess threshold accepting is optimal also for
several other measures of algorithm performance, such as maximizing the expected probability of seeing the
ground state and minimizing the expected value of the lowest energy seen.
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I. INTRODUCTION Il. EXTREMAL OPTIMIZATION

The need for f|nd|ng ground states Of Comp|ex Systems EO is a recently introduced heuristics to find ground
exists in many areas of modern science and engine¢ting States of complex physical systems. Moreover, it provides a
In the realm of physics, such problems include spin glassegeneral scheme to find the global minimum or other low-
[2], neural network$3], and protein folding4]. Traditional ~ lying states in multiminima optimization problems. EO is a
stochastic optimization methods to tackle these problems arétochastic optimization algorithm similar to SA and TA in
e.g., simulated anneali@A) and threshold acceptindA). that EO simulates a random walker in the state space. How-
The former usesETROPOLIS sampling combined with de- €ver, EO needs a special structure of the problem under con-
creasing temperatul,6]. The latter avoids the expenses of Sideration: every state is specified by several degrees of free-
evaluating a large number of exponential functions by intro-dom (DOF) each of which can be assigned a fitness. While
ducing a time-dependent “thresholf?,8]: if the energy dif- such a structure is not needed for SA or TA, it is present in a
ference between current and proposed state is Sma”er théll'gn|f|cant fraction of the prOblemS treated by these methods.
the threshold, the proposed move is accepted, otherwise it #§ typical example is spin-glass problems, where the state is
not. described by a spin configuration, and each of the spin vari-

Many of these problems have an additional structure thagbles represents one DOF. The local field at one spin multi-
is not used by traditional methods such as SA or TA. ThePlied by the value of the spin can be taken as the fitness of
additional structure implies that each state is defined by théhat spin. In that case, the objective function for the
value of many degrees of freedom such as the value of marijroblem—namely the energy—is additive over the fitnesses
spins[9] and that a certain fitness can be associated wittf the different DOF's.
each degree of freedom. When this additional structure is EO takes advantage of this additional structure to achieve
available, we can take advantage of it by using an algorithn@ better typical performance on such problems by randomly
known asextremal 0pt|m|zat|omEO) [10] SEIECting one DOF to Change at each Step. In EO, the next

We prove a theorem concerning the optimal selection ofPOF to change is selected by first ranking the DOF’s accord-
the next degree of freedom to change in EO. To prove ould to their fitness values and then selecting a rank. The DOF
theorem, we first show how to view EO as an algorithm ofWith the selected rank is to be changed during the next step.
the random-walk type. This enables us to apply the techT his procedurg is iterated, yielding repeated improvements
niques developed in Fraret al. [11] to show that any mea- ©f the DOF's fitness. _
sure of the algorithm performance which depends linearly on Problems which cannot be addressed by EQ include those
the state probabilities will use a fitness threshold acceptinghich offer only a number of abstract states without internal
(FTA) rule [12]. We show here that a construction analogousstructure. An exploration of examples of such state spaces
to Hoffmannet al. [13] can be used to show that FTA is using SA s given in14].
optimal for many other measures of algorithm performance,

including the expected value of the best energy seen during
the walk. I1l. DEFINITIONS

Technically the EO algorithm can be viewed as a random
walk in the spacé)={a} of states of the problerfi0,15. In
*Electronic address: hoffmann@physik.tu-chemnitz.de addition, there is an objective functid@=E(«) (in physical
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systems often the energyassigning every state a real

number.
Each of the statea is characterized by degrees of free-

dom (DOF), which are each assigned real numbers calle

their fitness For any of theL=|(}| statesa € (), there is a
neighborhood relationship that specifié&y) C (), the set of
states which can be reached franby a change in one of the
DOF's. More precisely, a state=(a;, ay, ..., @) is specified
by the values ofn DOF'’s indexed byi,1<i<n. Theith
degree of freedom has a valuge aV'={a!", ..., a!"}, where
o is the set of possible values for tith DOF. The number
of valuesm; may differ for different DOF’s, san=m(«;).
We assume that>n>1,0>m>1.

Each DOF is assigned a fitnedd «;), determining the
rankingk; e N;={1,2,...,n}, such that

ki<kjiff \y<\; O pairdi,j). (1)
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pL= 2 T’ (2)

BeQ

qVith transition probabilitiesl“taﬂ. The random walk consists

of a finite number of steps,<t<S. The transition prob-
abilities of Eq.(2) are specified by the rules of EO to be

t
ap

_ rT%_ldt(ki) if « differs from g only in theith DOF,
0 otherwise.
3
Note that these transition probabilities are linear functions of
d(k).
V. OPTIMAL ALGORITHMS

The goal of the random walk is to bring the walker as far

To complete the specification of the structure needed to pedown in the energy landscape as possible, controlling the
form an EO algorithm, we also need a time-dependent probrandom walk by choosing the probabilitid%k) at each time
ability distributiond'(k) over the ranks. stepte{1,2,...,S} in the algorithm with duratiors steps. In

The EO algorithm proceeds as follows: Let us assume thadrder to achieve such control, a criterion is needed which
the current state i8=(81,8-, ..., B,). First the DOF’s of the  quantifies this desire to come close to the global minimum of
current statg8 are ranked according to their fitness: the DOFthe energy function. Accordingly, we search for selection
with the smallest fitness has rank 1, the one with the highegtrobabilitiesd!(k) which optimize some measure of how far
fitness has rank. Then a rankk,1<k=n, is selected with down the random walker has gone.

probability d'(k). This rank corresponds to a DOFwhich is

The most common objective functions used to measure

then changed by choosing with equal probability one of thahe quality of stochastic optimization procedures are as fol-

possible values ia"\{;} so that the value of thkth ranked
DOF changes. The new stateis accepted unconditionally

lows.
(O1) The final mean energ$E[ a(S)]) should be as small

and B is set tow. This procedure is iterated until a stopping as possible,

criterion is met.

(02 The final probabilitypgS of ending up in the ground

Obviously the probability distribution used to select the state should be as large as possible,
rank of the DOF for the next state change plays a critical role  (O3) The expected number of visits to the ground state

for the performance of EO. Originallj1 5,16, a distribution
~k™™was used, introducing the single parameter0. For a

should be as large as possible,
(O4) The probability of visiting the ground state during

more in-depth discussion of EO in general, including moti-the execution of an algorithm should be as large as possible,

vation and issues related to defining fitnesses, we refer to the (O5) The mean final BSF energjl9,2q should be as

literature[15-17. small as possible. This so-called “best so far” energy of a
Here we focus on the dependence of the algorithm on given sequence or pati(t) up to stepSis given as

probability distribution over the ranks of the DOF and ask )

whether there exists @rovably) optimal choice for such a EgsH(S) = miny<is{E[a(t) ]} (4)

distribution. The class of distributions we will consider is 5nq describes the lowest energy found along that path.
characterized by the .following rather weak assumptions. For the objectivegO1) and (02), which are linear func-

(Al) Each step is mdepenc{ent oftthe former ?teps. tions of the final-state probabilitigs;, we showed12] that
~ (A2) At any epocht,1=d(1)=d(2)=---=d(M=0, finess threshold accepting is the best strategy to use. In the
i.e., itis more probable to select a low rakeaning a DOF  fq|jowing, we will prove that this applies for any objective
with low fitnesg than a high rankmeaning a DOF with high  \hich is a linear function of the state probabilitigls during
fitness. the whole process and not only &S. This extends the

(A3) Zid'(k)=1: theorem to cover objectiveD3).

Furthermore, we show that this is true not only for the
given random walk but also for a class of Markov chains
which can be constructed from the random walk. This con-
struction will enable us to include objectiveé®4) and (05)
among the cases to which the theorem applies. These last
two goals are the crucial quantities of interest if EO is em-
ployed, as we are interested in finding the ground state, or at
least very-low-lying states, not at thend of the run but at
any stepduring the run.

d'(k)) is normalized.

IV. THE DYNAMICS

EO executes a random walk on the state spacélhe
probability of finding the random walker in stateat time
stept is denoted byp!,. The conditiongA1)~(A3) guarantee
that we are dealing with a Markov proceds8]. Therefore,
the time development of!, is described by the master
equation
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VI. THE PROBABILITY DISTRIBUTION pt =Tt. pt_l, (10)

FOR THE BSF ENERGY _ —— _
where p' is the vector of probabilitiep;, representing the

In order to determine the mean final BSF energy, we needtate of the random walk at timte andI't is the transition
the probabilityBE) to have seen an ener@yor better up o matrix with entriesl™ ;. Similarly, Eq.(6) is expressed as
time S. This probability can be obtained by considering a . D
modified random walk which turns states at or below energy Pe, =T - pg (11)
E into absorbing statel1]. This is achieved by introducing
a modified transition probability matriEtaﬂ;E,

rt _{5@,3) if E(B) <E,
aBET

Combining all the probability vectorptEr(r €{0,1,...,R})
into one vector, we can write

5 t+1 ¢
I ifEp >E 5) st [rs 0 o 0 g
°” t+1 i 0 Tp - O Pk
= 1 = 1 1
where §(a, B) is Kronecker’s delta. Note that these modifi- LA VR el |
cations still keep the dependence on the selection probabili- Pt 0 0 ... I .
i t i ; t Eg Er PEeg
tiesd'(k) linear in all of thel", 5.c. g
In the modified stochastic process, a random walker e (12)

reaching a state with energy less than or equéd imtrapped  Thus for e {1,...,L} and r{0,...,R} we have qtma
at that state. Evolving the associated probability distribution=p! _ Hence the time development of the unmodified chain

t
PaEr is contained irg’,, y=1,...,L. The mean BSF energy can be
_ expressed as
pta;E: 2 rta,B;Eptﬁ;é! (6) P
BeQ

R
gives the probability of being in stateof the modified chain (Epse(S) = Z E[BXE) - BE,-]
aftert steps. FOE(a) > E, this is the same as the probability =t
of being in statew in the unmodified random walk and not R s s
having visited any states with an energy less than or equal to =2 Er< > PuE, ~ > pa;Er_l)
E before timet. The probability to have visited a state with =l \aB@<k wB(0)<Er

energy less than or equal Ebup to timeSin the unmodified R
random walk is thus => E,( > Qe X qf(,_l)m).
< S r=1 a:E(a)<E; a:E(e)<E,_q
BY(E) = a:E%sE Pae: @) Note that all our objective function€01)—(O5) are linear

functions of the probabilitiesq, ye{1,...,L(R+1)},t

For the full distribution of the BSF energy, we need to < {1,... S}, a fact which is central to the arguments below.
repeat this modified random walk for all possible energy val-

ues in the system. Due to the finiteness of the state space, we
can sort the(finite) number of different energy values in
ascending order and label theg,r{1,2,...,R} to get In an earlier publicatioil2], we proved that for selection
E,<E,<:--<Eg Then for everyr the corresponding probabilities with propertiegA1)~(A3), the optimal strategy
BS(E,) is determined and the probability that the lowest en-is to use fitness threshold accepting. Here we extend that
ergy visitedE, is given by work by investigating also objectivg®©3)—05), and more
bS(E,) = BSE,) - BE, ), ®) gtenerally, any objective function which is a linear function of

where we introduce for convenience an additional en&gy ! Theorem:For any optimization algorithm in an EO frame-
which is an arbitrary energy value lower than the ground-work satisfying propertiegA1)«(A3), and any objective
state energyE,. SinceE, is less than any energy reachable function which is linear in the probabilitiesqty,y
by the chain, we must haV@Z;EoszaFLﬁ;EO:FLB' and e{1,...,L(R+1},te{1,...,S of the extended random

VII. THE THEOREM

BS(Ey) =0. walk constructed above, the optimal selection probability is
Then from Eq.(8) the mean BSF energiEgs<(S) is ob- fitness threshold accepting.
tained as

VIIl. THE PROOF

R
(Egse(9)) = 2 bSE,)E,. 9 Fundamental to our proof is the fact that all of the entries
=t in the transition matrix* are linear functions of the selec-
Summarizing the above, for eachthe master equation tion probabilitiesd!(k;). In the following, it is convenient to
with corresponding modified transition probabiliti@é,ﬁ;Er introduce a vector notation. Just as we changed from denot-
needs to be iterated. This can be presented in a compact wéd the vector of probabilitieg], as anL-dimensional vector

by introducing a vector/matrix notation for the original mas- p', and theL(R+1) dimensional state vectors hj, we asso-
ter equation2), ciate a sequence of vectoEs of L(R+1) elements to any
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linear function of the state vectorg,t=1,...,S. Our theo-
rem concerns any objective function linear in the i.e.,
minimizing any function of the form

S L(R+1)

L9 = E(Ft)tr q'=> > Figi— min,

t=1 i=1

F(gh 0P, ..

(13

where( )" denotes transpose and the minimum is taken over

all possible sequences of selection probabilitidik;),t
=1,...,S

The vectorsF! may be any arbitrant (R+1)-tuples of
numbers. For instance for the critefi@1)—(O5) these are as
follows.

(0O1) For minimizing the mean final energy,

(@ F' =0 fort<sS,

(b) F2=E(y) for y<L,

(c) F;=0 for y>L.

(02) For maximizing the final ground-state probability,

>0

y<L.E(y)=E;

F' =0 unlesst=S, y=<L, andE(y)=E, in which caseF>=

==

(03) For maximizing the expected number of visits to the

ground stateFt 0 unlessy<L andE(y)=E;,, in which case
Fl=-1.

(04) For maximizing the probability of visiting the

PHYSICAL REVIEW E 70, 046704(2004)

I=XnH

FIG. 1. Construction of the simplex in three dimensions. The
axes on the left side denote the entriesdbfCondition (A2) (see
text) definesX. On the right side, the effect of conditiq\3) is
shown:X is cut byH. The vertices oiXNH can be computed.

point(1/3,1/3,1/3,0,..,0)". We repeat this procedure un-
til the last vertex is found: the pointl/n,1/n,...,1/n)".
Note that the elements &f are pairwise distinct and linearly
independent.

We show that the convex hull of the,

1 1/2 1/n
" 0 1/2 1/n
C(V):Eaivi:al <[ Fag - o tay .
i=1 . N .
0 0 1/n
(14

with the coefficientsa; obeyinga, €[0,1], Z;a=1, is the
largest possible simplex itn—1)-dimensional space fulfill-

ground state during the execution of the algorithm, we neeghg (A2) and (A3).

to maximizeb¥E;)=BYE,). ThusF'= 0 unlesst=S,L<7y
<2L, andE(y)=Ej, in which caseF)=—

(O5) For minimizing the mean BSF energy,

(@) F,=0 fort<s

(bF>,,=0 for ref0,..,R-1},ae{l,...,L}, and
E(a)> Er,

(c)F,_Ha—Er—Er+l forke{0,...,R-1},ae{1,...,L} and
E(a) = Er,

(d) FPre,,=Erfor ae{l,...,L}.

Let us consider the distributionsdi(k) as an

n-dimensional vectod' with entriesdit in [0, 1]. We note
some consequences of our conditioh2): The possible
range for the vectod' is a simplexX in an n-dimensional
space. The vertices of the simplex are those veatonghich

have an initial sequence of ones, followed by zeros. Condi-

tion (A3) defines a hyperpland in the samen-dimensional
space. The intersectidn=XNH, having dimensiom-1, is
the final set of allowed selection distributiod'k). Figure 1
shows the construction far=3. Note thatl is itself a sim-
plex; we denote the set of the verticeslofith V={v;}.

Based on this construction, we are able to compute the

elements ofV explicitly. According to (A2),
(1,0,...
rest of the vertices of. We can do this by decreasinty 1)

and increasingl'(2) while leaving all othed'(k;) untouched

the point

until we cannot go any further. This results in the point
,0)". From there we decrease the first two

(1/2,1/2,0,..

TheIth row d} of Eq. (14) is
n

1 1
> ai7+&T=

i=l+1 |

1
d,, + a7 = d,;, (15

n
1
d=> &=
i=|
s0 (A2) is fulfilled. Summing up the rows dE(V) gives

Edt Ean- E|a|

1=1 1=1 i=l

Ea|1

(16)

showing that(A3) is also fulfilled: C(V) CI.
Now we look at an arbitrary poir e I. Using the basis
{v;} CI for describingp’s coordinates,, we get

,0)" is an element o¥. Let us start a search for the Summing up allp; and using(A3) gives

n
1 1
P=2 b =Pty (17)
i=l
and due tqA2)
1
P =p 0 pl‘p|+1:b||_>0D b, = 0. (18
n n
EPFE'Q 2b| 10 by < (19
=1 1=1

coordinates while increasing the third, again leaving the respo we havey =0 andb <1, thereforepe C(V)Opel, i.e.,
untouched, until we cannot go further again. The result is thé C C(V).
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d' & & & The proof shows that a uniform distribution over some of

" , - . e s the “least fit” DOF's gives the best implementation of EO.
q "2 .9 .9 "" The resulting class of algorithms—EO in combination with
this special distributiord'(k)—was dubbeditness threshold
FIG. 2. The dynamic optimization process. An inmit! is  accepting(FTA), because in analogy to TA, all moves select-
transformed into an outpuf under the influence of some conta$l NG ranks which lie under a certain fitness threshold are se-
(see text lected with equal probability.
We remark that our proof does not state thHtoptimal
IX. THE SOLUTION strategies are of the given form. In principle, other strategies
may do equally wellbut certainly not bettgr Other equally
The optimization task13) for the dynamic process de- good strategies can only occur if an edge or a face of the
scribed by Eq(12) is a discrete control problem, where the simplex does equally well as one of the vertices belonging to
controls are the selection probability vectdfsWe apply the it. The optimality of such an edge corresponds to selecting
Bellman principle of dynamic programmir[@2], and work  the leastr ranks with equal probability doing as well as
our way backwards starting with the last step. The scheme dafelecting the least—1 ranks. Finally, we remark that the
our dynamic programming problem is illustrated in Fig. 2. optimality of a strictly monotonic distribution such a¥k)
In every steqt, an inputg'™! is transformed into the output o 7% would imply that all the vertices iV do equally well,
gt under the influence of the contrdi Finally, the output for a case which can only happen for rather trivial problems.
all the steps is used to determine the optimality criterion
F(qt,0%,...,0%. Let us first consider the last step For
given inputsg!, 1<t<S-1, we have to solve the optimiza-
tion problem We considered certain measures of algorithm performance
associated with the problem of finding the ground state of a

X. CONCLUSIONS

b T e e s complex system by using the heuristic known as extremal
2 (FY g =2 (FY" g+ (F9" q optimization. We used a master equation to describe the cor-
=1 =1 responding dynamics of random walkers on state space and

= const HF'T'SgS ! — min, (20) formulated some straightforward conditions on the probabil-

ity distribution for selecting the degree of freed@®OF) to
change at the next step.

where, as noted above, the matrix elemdfﬁsglven In Eg. Our goal was to find selection probabilities which opti-

(12) depend linearly on the control vectdf. The possible
range ford® is the simplex described in the previous section.maIIy control the movements of the random walkers. We

Hence we have to find the minimum of a linear function Orlfound that a special distribution of selection probabilities is
a simplex. By the fundamental theorem of linear program-pmv"".bly optimal providgd the performance of the randqr_n
ming [23], this minimum is found at one of the vertices\iy walk is measured by a linear function in the state probabili-
ie. ata %itness threshold acceptance funckitd]. Call thi:; ties. This includes minimizing the expected final energy or

vertexvS. Of course this verten® depends on the inpef* maximizing the probability of being in the ground state at the
ie vS:l;S(qS—l) " final time. By constructing an extended dynamics, we were

able to show that linear measures include the expected prob-
ability of visiting the ground state and the expected value of
the best energy seen. We named the resulting optimal control
“fitness threshold accepting” since it always selects with
S TS1.52 HTS) S TS1 S0 . equal probability from those degrees of freedom with fithess
const HF=H " T¥g%2 + (F9TXIT g™ — min, values below a certain threshold.
(21 We assumed that the set of possible values of each degree
of freedom and the number of degrees of freedom are the
where we now already know th&t3(vS) is a transition ma- same for each state. This assumption can be dropped without
trix corresponding to fitness threshold acceptance. For fixedffecting the arguments or the conclusions—the only effect
vS, the optimization probleng21) is again a linear problem would be the necessity of a much more cumbersome
with the same structure as ERO) over the same range. notation.
Thus the optimal control is found at one of the vertice¥jn We did not show that fitness threshold accepting is the
which we callvS ™. This vertexvS depends on the input only optimal way to implement extremal optimization. Our
g>?and on the vertexS, i.e.,vS1=v5Yq%2?,v9. Since the  proof shows that using any linear performance measure, in-
vertex setV is finite, there is a vertex® which gives the cluding the measure$O1)«05), would make a strictly
minimum over all|V| possible minimum values in problem monotonic distribution over ranks such asd'(k) « 7% ad-
(22). In a similar way, we process the remaining steps of thevocated by Boettchest al. [10], optimal only ifall selection
dynamical optimization problem from the end to the begin-distributions perform equally well.
ning. At each step, we find a linear optimization problem Without knowing what the optimal thresholds are, the
over the same simplex range which attains its minimum aknowledge that best performance can be achieved using fit-
one of the vertices, thereby completing the proof. ness threshold accepting is of limited use. In particular, fit-

Now let us continue with the second to last sg&pl. For
given inputsqt, 1<t=<S-2, we have to solve the optimiza-
tion problem
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ness threshold accepting with the wrong thresholds might be Our proof had to assume a finite state space. We postpone
outperformed by other well-adapted selection distributions. the exploration of continuous state spaces to future efforts

We considered only algorithms based on extremal optimibut note that discrete arithmetic on digital computers makes
zation. The possibility of better algorithms not based on exstate spaces effectively finite. Finally, our proof was based
tremal optimization remains. Within the given field, how- on the assumption that the objective measuring the perfor-
ever, the arguments presented here establish the structure ofrence of the extremal optimization is a linear function of the
provably optimal strategy, which can benefit the furtherstate probabilities. While this includes most desirable mea-
study of heuristic approaches to global minimization. sures, it does not include them all.
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