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We treat the problem of selecting the next degree of freedom for update in an extremal optimization
algorithm designed to find the ground state of a system with a complex energy landscape. We show that there
exists a best distribution for selecting the next degree of freedom in order to optimize any linear function of the
state probabilities, e.g., the expected number of visits to the ground state. We dub the class of algorithms using
this best distribution in conjunction with extremal optimizationfitness threshold accepting. In addition, we
construct an extended random walk and use it to show that fitness threshold accepting is optimal also for
several other measures of algorithm performance, such as maximizing the expected probability of seeing the
ground state and minimizing the expected value of the lowest energy seen.
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I. INTRODUCTION

The need for finding ground states of complex systems
exists in many areas of modern science and engineering[1].
In the realm of physics, such problems include spin glasses
[2], neural networks[3], and protein folding[4]. Traditional
stochastic optimization methods to tackle these problems are,
e.g., simulated annealing(SA) and threshold accepting(TA).
The former usesMETROPOLIS sampling combined with de-
creasing temperature[5,6]. The latter avoids the expenses of
evaluating a large number of exponential functions by intro-
ducing a time-dependent “threshold”[7,8]: if the energy dif-
ference between current and proposed state is smaller than
the threshold, the proposed move is accepted, otherwise it is
not.

Many of these problems have an additional structure that
is not used by traditional methods such as SA or TA. The
additional structure implies that each state is defined by the
value of many degrees of freedom such as the value of many
spins [9] and that a certain fitness can be associated with
each degree of freedom. When this additional structure is
available, we can take advantage of it by using an algorithm
known asextremal optimization(EO) [10].

We prove a theorem concerning the optimal selection of
the next degree of freedom to change in EO. To prove our
theorem, we first show how to view EO as an algorithm of
the random-walk type. This enables us to apply the tech-
niques developed in Franzet al. [11] to show that any mea-
sure of the algorithm performance which depends linearly on
the state probabilities will use a fitness threshold accepting
(FTA) rule [12]. We show here that a construction analogous
to Hoffmann et al. [13] can be used to show that FTA is
optimal for many other measures of algorithm performance,
including the expected value of the best energy seen during
the walk.

II. EXTREMAL OPTIMIZATION

EO is a recently introduced heuristics to find ground
states of complex physical systems. Moreover, it provides a
general scheme to find the global minimum or other low-
lying states in multiminima optimization problems. EO is a
stochastic optimization algorithm similar to SA and TA in
that EO simulates a random walker in the state space. How-
ever, EO needs a special structure of the problem under con-
sideration: every state is specified by several degrees of free-
dom (DOF) each of which can be assigned a fitness. While
such a structure is not needed for SA or TA, it is present in a
significant fraction of the problems treated by these methods.
A typical example is spin-glass problems, where the state is
described by a spin configuration, and each of the spin vari-
ables represents one DOF. The local field at one spin multi-
plied by the value of the spin can be taken as the fitness of
that spin. In that case, the objective function for the
problem—namely the energy—is additive over the fitnesses
of the different DOF’s.

EO takes advantage of this additional structure to achieve
a better typical performance on such problems by randomly
selecting one DOF to change at each step. In EO, the next
DOF to change is selected by first ranking the DOF’s accord-
ing to their fitness values and then selecting a rank. The DOF
with the selected rank is to be changed during the next step.
This procedure is iterated, yielding repeated improvements
of the DOF’s fitness.

Problems which cannot be addressed by EO include those
which offer only a number of abstract states without internal
structure. An exploration of examples of such state spaces
using SA is given in[14].

III. DEFINITIONS

Technically the EO algorithm can be viewed as a random
walk in the spaceV=haj of states of the problem[10,15]. In
addition, there is an objective functionE=Esad (in physical*Electronic address: hoffmann@physik.tu-chemnitz.de
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systems often the energy), assigning every state a real
number.

Each of the statesa is characterized byn degrees of free-
dom (DOF), which are each assigned real numbers called
their fitness. For any of theL= uVu statesaPV, there is a
neighborhood relationship that specifiesNsad#V, the set of
states which can be reached froma by a change in one of the
DOF’s. More precisely, a statea=sa1,a2,… ,and is specified
by the values ofn DOF’s indexed byi ,1ø i øn. The ith
degree of freedom has a valueai Pasid=ha1

sid ,… ,ami

sidj, where
asid is the set of possible values for theith DOF. The number
of valuesmi may differ for different DOF’s, somi =msaid.
We assume that̀ .n.1,`.m.1.

Each DOF is assigned a fitnesslisaid, determining the
rankingki PNn

* =h1,2,… ,nj, such that

ki ø kj iff li ø l j ∀ pairssi, jd. s1d

To complete the specification of the structure needed to per-
form an EO algorithm, we also need a time-dependent prob-
ability distributiondtskd over the ranks.

The EO algorithm proceeds as follows: Let us assume that
the current state isb=sb1,b2,… ,bnd. First the DOF’s of the
current stateb are ranked according to their fitness: the DOF
with the smallest fitness has rank 1, the one with the highest
fitness has rankn. Then a rankk,1økøn, is selected with
probabilitydtskd. This rank corresponds to a DOF,i, which is
then changed by choosing with equal probability one of the
possible values inasid \ hbij so that the value of thekth ranked
DOF changes. The new statea is accepted unconditionally
andb is set toa. This procedure is iterated until a stopping
criterion is met.

Obviously the probability distribution used to select the
rank of the DOF for the next state change plays a critical role
for the performance of EO. Originally[15,16], a distribution
,k−t was used, introducing the single parametert.0. For a
more in-depth discussion of EO in general, including moti-
vation and issues related to defining fitnesses, we refer to the
literature[15–17].

Here we focus on the dependence of the algorithm on a
probability distribution over the ranks of the DOF and ask
whether there exists a(provably) optimal choice for such a
distribution. The class of distributions we will consider is
characterized by the following rather weak assumptions.

(A1) Each step is independent of the former steps.
(A2) At any epoch t ,1ùdts1dùdts2dù ¯ ùdtsndù0,

i.e., it is more probable to select a low rank(meaning a DOF
with low fitness) than a high rank(meaning a DOF with high
fitness).

(A3) oid
tskid=1: dtskid is normalized.

IV. THE DYNAMICS

EO executes a random walk on the state spaceV. The
probability of finding the random walker in statea at time
stept is denoted bypa

t . The conditions(A1)–(A3) guarantee
that we are dealing with a Markov process[18]. Therefore,
the time development ofpa

t is described by the master
equation

pa
t = o

bPV

Gab
t pb

t−1 s2d

with transition probabilitiesGab
t . The random walk consists

of a finite number of steps, 1ø tøS. The transition prob-
abilities of Eq.(2) are specified by the rules of EO to be

Gab
t

= H 1
m−1dtskid if a differs from b only in the ith DOF,

0 otherwise.
J

s3d

Note that these transition probabilities are linear functions of
dtskid.

V. OPTIMAL ALGORITHMS

The goal of the random walk is to bring the walker as far
down in the energy landscape as possible, controlling the
random walk by choosing the probabilitiesdtskd at each time
steptP h1,2,… ,Sj in the algorithm with durationSsteps. In
order to achieve such control, a criterion is needed which
quantifies this desire to come close to the global minimum of
the energy function. Accordingly, we search for selection
probabilitiesdtskd which optimize some measure of how far
down the random walker has gone.

The most common objective functions used to measure
the quality of stochastic optimization procedures are as fol-
lows.

(O1) The final mean energykEfasSdgl should be as small
as possible,

(O2) The final probabilitypGS
S of ending up in the ground

state should be as large as possible,
(O3) The expected number of visits to the ground state

should be as large as possible,
(O4) The probability of visiting the ground state during

the execution of an algorithm should be as large as possible,
(O5) The mean final BSF energy[19,20] should be as

small as possible. This so-called “best so far” energy of a
given sequence or pathastd up to stepS is given as

EBSFsSd = min0øtøShEfastdgj s4d

and describes the lowest energy found along that path.
For the objectives(O1) and (O2), which are linear func-

tions of the final-state probabilitiespa
S, we showed[12] that

fitness threshold accepting is the best strategy to use. In the
following, we will prove that this applies for any objective
which is a linear function of the state probabilitiespa

t during
the whole process and not only att=S. This extends the
theorem to cover objective(O3).

Furthermore, we show that this is true not only for the
given random walk but also for a class of Markov chains
which can be constructed from the random walk. This con-
struction will enable us to include objectives(O4) and (O5)
among the cases to which the theorem applies. These last
two goals are the crucial quantities of interest if EO is em-
ployed, as we are interested in finding the ground state, or at
least very-low-lying states, not at theend of the run but at
any stepduring the run.
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VI. THE PROBABILITY DISTRIBUTION
FOR THE BSF ENERGY

In order to determine the mean final BSF energy, we need
the probabilityBSsEd to have seen an energyE or better up to
time S. This probability can be obtained by considering a
modified random walk which turns states at or below energy
E into absorbing states[21]. This is achieved by introducing
a modified transition probability matrixGab;E

t ,

Gab;E
t = Hdsa,bd if Esbd ø E,

Gab
t if Esbd . E,

J s5d

wheredsa ,bd is Kronecker’s delta. Note that these modifi-
cations still keep the dependence on the selection probabili-
ties dtskid linear in all of theGab;E

t .
In the modified stochastic process, a random walker

reaching a state with energy less than or equal toE is trapped
at that state. Evolving the associated probability distribution
pa;E

t ,

pa;E
t = o

bPV

Gab;E
t pb;E

t−1 , s6d

gives the probability of being in statea of the modified chain
after t steps. ForEsad.E, this is the same as the probability
of being in statea in the unmodified random walk and not
having visited any states with an energy less than or equal to
E before timet. The probability to have visited a state with
energy less than or equal toE up to timeS in the unmodified
random walk is thus

BSsEd = o
a:EsadøE

pa;E
S . s7d

For the full distribution of the BSF energy, we need to
repeat this modified random walk for all possible energy val-
ues in the system. Due to the finiteness of the state space, we
can sort the(finite) number of different energy values in
ascending order and label themEr ,r P h1,2,… ,Rj to get
E1,E2, ¯ ,ER. Then for every r the corresponding
BSsErd is determined and the probability that the lowest en-
ergy visitedEr is given by

bSsErd = BSsErd − BSsEr−1d, s8d

where we introduce for convenience an additional energyE0,
which is an arbitrary energy value lower than the ground-
state energyE1. SinceE0 is less than any energy reachable
by the chain, we must havepa;E0

t =pa
t ,Gab;E0

t =Gab
t , and

BSsE0d=0.
Then from Eq.(8) the mean BSF energykEBSFsSdl is ob-

tained as

kEBSFsSdl = o
r=1

R

bSsErdEr . s9d

Summarizing the above, for eachr the master equation
with corresponding modified transition probabilitiesGab;Er

t

needs to be iterated. This can be presented in a compact way
by introducing a vector/matrix notation for the original mas-
ter equation(2),

pt = Gt ·pt−1, s10d

where pt is the vector of probabilitiespa
t representing the

state of the random walk at timet, and Gt is the transition
matrix with entriesGab

t . Similarly, Eq.(6) is expressed as

pEr

t = GEr

t ·pEr

t−1. s11d

Combining all the probability vectorspEr

t sr P h0,1,… ,Rjd
into one vectorqt, we can write

s12d

Thus for aP h1,… ,Lj and r P h0,… ,Rj we have qLr+a
t

=pa;Er

t . Hence the time development of the unmodified chain
is contained inqg

t ,g=1,… ,L. The mean BSF energy can be
expressed as

kEBSFsSdl = o
r=1

R

ErfBSsErd − BSsEr−1dg

= o
r=1

R

ErS o
a:EsadøEr

pa;Er

S − o
a:EsadøEr−1

pa;Er−1

S D
= o

r=1

R

ErS o
a:EsadøEr

qLr+a
S − o

a:EsadøEr−1

qLsr−1d+a
S D .

Note that all our objective functions(O1)–(O5) are linear
functions of the probabilities qg

t ,gP h1,… ,LsR+1dj ,t
P h1,… ,Sj, a fact which is central to the arguments below.

VII. THE THEOREM

In an earlier publication[12], we proved that for selection
probabilities with properties(A1)–(A3), the optimal strategy
is to use fitness threshold accepting. Here we extend that
work by investigating also objectives(O3)–(O5), and more
generally, any objective function which is a linear function of
qg

t .
Theorem:For any optimization algorithm in an EO frame-

work satisfying properties(A1)–(A3), and any objective
function which is linear in the probabilitiesqg

t ,g
P h1,… ,LsR+1dj ,tP h1,… ,Sj of the extended random
walk constructed above, the optimal selection probability is
fitness threshold accepting.

VIII. THE PROOF

Fundamental to our proof is the fact that all of the entries

in the transition matrixG̃t are linear functions of the selec-
tion probabilitiesdtskid. In the following, it is convenient to
introduce a vector notation. Just as we changed from denot-
ing the vector of probabilitiespa

t as anL-dimensional vector
pt, and theLsR+1d dimensional state vectors byqt, we asso-
ciate a sequence of vectorsF t of LsR+1d elements to any
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linear function of the state vectorsqt ,t=1,… ,S. Our theo-
rem concerns any objective function linear in theqt, i.e.,
minimizing any function of the form

Fsq1,q2,…,qSd = o
t=1

S

sF tdtr ·qt = o
t=1

S

o
i=1

LsR+1d

Fi
tqi

t → min,

s13d

wheres dtr denotes transpose and the minimum is taken over
all possible sequences of selection probabilitiesdtskid ,t
=1,… ,S.

The vectorsF t may be any arbitraryLsR+1d-tuples of
numbers. For instance for the criteria(O1)–(O5) these are as
follows.

(O1) For minimizing the mean final energy,
(a) Fg

t =0 for t,S,
(b) Fg

S=Esgd for gøL,
(c) Fg

S=0 for g.L.
(O2) For maximizing the final ground-state probability,

o
gøL,Esgd=E1

pg
S,

Fg
t =0 unlesst=S,gøL, and Esgd=E1, in which caseFg

S=
−1.

(O3) For maximizing the expected number of visits to the
ground state,Fg

t =0 unlessgøL andEsgd=E1, in which case
Fg

t =−1.
(O4) For maximizing the probability of visiting the

ground state during the execution of the algorithm, we need
to maximizebSsE1d=BSsE1d. Thus Fg

t =0 unlesst=S,L,g
ø2L, andEsgd=E1, in which caseFg

S=−1.
(O5) For minimizing the mean BSF energy,
(a) Fg

t =0 for t,S;
(b)FLr+a

S =0 for r P h0,… ,R−1j ,aP h1,… ,Lj, and
Esad.Er;

(c)FLr+a
S =Er −Er+1 for kP h0,… ,R−1j ,aP h1,… ,Lj and

EsadøEr;
(d) FLR+a

S =ER for aP h1,… ,Lj.
Let us consider the distributionsdtskid as an

n-dimensional vectordt with entriesdi
t in [0, 1]. We note

some consequences of our condition(A2): The possible
range for the vectordt is a simplexX in an n-dimensional
space. The vertices of the simplex are those vectorsdt which
have an initial sequence of ones, followed by zeros. Condi-
tion (A3) defines a hyperplaneH in the samen-dimensional
space. The intersectionI =XùH, having dimensionn−1, is
the final set of allowed selection distributionsdtskd. Figure 1
shows the construction forn=3. Note thatI is itself a sim-
plex; we denote the set of the vertices ofI with V=hvij.

Based on this construction, we are able to compute the
elements of V explicitly. According to (A2), the point
s1,0,… ,0dtr is an element ofV. Let us start a search for the
rest of the vertices ofI. We can do this by decreasingdts1d
and increasingdts2d while leaving all otherdtskid untouched
until we cannot go any further. This results in the point
s1/2,1/2,0,… ,0dtr. From there we decrease the first two
coordinates while increasing the third, again leaving the rest
untouched, until we cannot go further again. The result is the

point s1/3,1/3,1/3,0,… ,0dtr. We repeat this procedure un-
til the last vertex is found: the points1/n,1 /n,… ,1 /ndtr.
Note that the elements ofV are pairwise distinct and linearly
independent.

We show that the convex hull of thevi,

CsVd = o
i=1

n

aivi = a13
1

0

]

0
4 + a23

1/2

1/2

]

0
4 + ¯ + an3

1/n

1/n

]

1/n
4
s14d

with the coefficientsai obeying ai P f0,1g , oiai =1, is the
largest possible simplex insn−1d-dimensional space fulfill-
ing (A2) and (A3).

The lth row dl
t of Eq. (14) is

dl
t = o

i=l

n

ai
1

i
= o

i=l+1

n

ai
1

i
+ al

1

l
= dl+1

t + al
1

l
ù dl+1

t , s15d

so (A2) is fulfilled. Summing up the rows ofCsVd gives

o
l=1

n

dl
t = o

l=1

n

o
i=l

n

ai
1

i
= o

l=1

n

lal
1

l
= o

l=1

n

al = 1, s16d

showing that(A3) is also fulfilled:CsVd, I.
Now we look at an arbitrary pointpP I. Using the basis

hvij, I for describingp’s coordinatespl, we get

pl = o
i=l

n

bi
1

i
= pl+1 + bl

1

l
s17d

and due to(A2)

pl ù pl+1 ⇒ pl − pl+1 = bl
1

l
ù 0 ⇒ bl ù 0. s18d

Summing up allpl and using(A3) gives

o
l=1

n

pl = o
l=1

n

lbl
1

l
= o

l=1

n

bl = 1 ⇒ bl ø 1. s19d

So we havebl ù0 andbl ø1, thereforepPCsVd∀pP I, i.e.,
I ,CsVd.

FIG. 1. Construction of the simplexX in three dimensions. The
axes on the left side denote the entries ofdt. Condition (A2) (see
text) definesX. On the right side, the effect of condition(A3) is
shown:X is cut byH. The vertices ofXùH can be computed.
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IX. THE SOLUTION

The optimization task(13) for the dynamic process de-
scribed by Eq.(12) is a discrete control problem, where the
controls are the selection probability vectorsdt. We apply the
Bellman principle of dynamic programming[22], and work
our way backwards starting with the last step. The scheme of
our dynamic programming problem is illustrated in Fig. 2.

In every stept, an inputqt−1 is transformed into the output
qt under the influence of the controldt. Finally, the output for
all the steps is used to determine the optimality criterion
Fsq1,q2,… ,qSd. Let us first consider the last stepS. For
given inputsqt ,1ø tøS−1, we have to solve the optimiza-
tion problem

o
t=1

S

sF tdtr ·qt = o
t=1

S−1

sF tdtr ·qt + sFSdtr ·qS

= const +sFSdtrG̃SqS−1 → min, s20d

where, as noted above, the matrix elementsG̃i j
S given in Eq.

(12) depend linearly on the control vectordS. The possible
range fordS is the simplex described in the previous section.
Hence we have to find the minimum of a linear function on
a simplex. By the fundamental theorem of linear program-
ming [23], this minimum is found at one of the vertices inV,
i.e., at a fitness threshold acceptance function[12]. Call this
vertexvS. Of course this vertexvS depends on the inputqS−1,
i.e., vS=vSsqS−1d.

Now let us continue with the second to last stepS−1. For
given inputsqt ,1ø tøS−2, we have to solve the optimiza-
tion problem

const +sFS−1dtr · G̃S−1qS−2 + sFSdtrG̃SsvSdG̃S−1qS−2 → min,

s21d

where we now already know thatGSsvSd is a transition ma-
trix corresponding to fitness threshold acceptance. For fixed
vS, the optimization problem(21) is again a linear problem
with the same structure as Eq.(20) over the same range.
Thus the optimal control is found at one of the vertices inV,
which we callvS−1. This vertexvS−1 depends on the input
qS−2 and on the vertexvS, i.e.,vS−1=vS−1sqS−2,vSd. Since the
vertex setV is finite, there is a vertexvS which gives the
minimum over alluVu possible minimum values in problem
(21). In a similar way, we process the remaining steps of the
dynamical optimization problem from the end to the begin-
ning. At each step, we find a linear optimization problem
over the same simplex range which attains its minimum at
one of the vertices, thereby completing the proof.

The proof shows that a uniform distribution over some of
the “least fit” DOF’s gives the best implementation of EO.
The resulting class of algorithms—EO in combination with
this special distributiondtskd—was dubbedfitness threshold
accepting(FTA), because in analogy to TA, all moves select-
ing ranks which lie under a certain fitness threshold are se-
lected with equal probability.

We remark that our proof does not state thatall optimal
strategies are of the given form. In principle, other strategies
may do equally well(but certainly not better). Other equally
good strategies can only occur if an edge or a face of the
simplex does equally well as one of the vertices belonging to
it. The optimality of such an edge corresponds to selecting
the leastr ranks with equal probability doing as well as
selecting the leastr −1 ranks. Finally, we remark that the
optimality of a strictly monotonic distribution such asdtskd
~t−k would imply that all the vertices inV do equally well,
a case which can only happen for rather trivial problems.

X. CONCLUSIONS

We considered certain measures of algorithm performance
associated with the problem of finding the ground state of a
complex system by using the heuristic known as extremal
optimization. We used a master equation to describe the cor-
responding dynamics of random walkers on state space and
formulated some straightforward conditions on the probabil-
ity distribution for selecting the degree of freedom(DOF) to
change at the next step.

Our goal was to find selection probabilities which opti-
mally control the movements of the random walkers. We
found that a special distribution of selection probabilities is
provably optimal provided the performance of the random
walk is measured by a linear function in the state probabili-
ties. This includes minimizing the expected final energy or
maximizing the probability of being in the ground state at the
final time. By constructing an extended dynamics, we were
able to show that linear measures include the expected prob-
ability of visiting the ground state and the expected value of
the best energy seen. We named the resulting optimal control
“fitness threshold accepting” since it always selects with
equal probability from those degrees of freedom with fitness
values below a certain threshold.

We assumed that the set of possible values of each degree
of freedom and the number of degrees of freedom are the
same for each state. This assumption can be dropped without
affecting the arguments or the conclusions—the only effect
would be the necessity of a much more cumbersome
notation.

We did not show that fitness threshold accepting is the
only optimal way to implement extremal optimization. Our
proof shows that using any linear performance measure, in-
cluding the measures(O1)–(O5), would make a strictly
monotonic distribution over ranksk, such asdtskd~t−k ad-
vocated by Boettcheret al. [10], optimal only if all selection
distributions perform equally well.

Without knowing what the optimal thresholds are, the
knowledge that best performance can be achieved using fit-
ness threshold accepting is of limited use. In particular, fit-

FIG. 2. The dynamic optimization process. An inputqt−1 is
transformed into an outputqt under the influence of some controldt

(see text).
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ness threshold accepting with the wrong thresholds might be
outperformed by other well-adapted selection distributions.

We considered only algorithms based on extremal optimi-
zation. The possibility of better algorithms not based on ex-
tremal optimization remains. Within the given field, how-
ever, the arguments presented here establish the structure of a
provably optimal strategy, which can benefit the further
study of heuristic approaches to global minimization.

Our proof had to assume a finite state space. We postpone
the exploration of continuous state spaces to future efforts
but note that discrete arithmetic on digital computers makes
state spaces effectively finite. Finally, our proof was based
on the assumption that the objective measuring the perfor-
mance of the extremal optimization is a linear function of the
state probabilities. While this includes most desirable mea-
sures, it does not include them all.
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